A Probabilistic Approach to Syntax-based Reordering for Statistical Machine Translation

نویسندگان

  • Chi-Ho Li
  • Minghui Li
  • Dongdong Zhang
  • Mu Li
  • Ming Zhou
  • Yi Guan
چکیده

Inspired by previous preprocessing approaches to SMT, this paper proposes a novel, probabilistic approach to reordering which combines the merits of syntax and phrase-based SMT. Given a source sentence and its parse tree, our method generates, by tree operations, an n-best list of reordered inputs, which are then fed to standard phrase-based decoder to produce the optimal translation. Experiments show that, for the NIST MT-05 task of Chinese-toEnglish translation, the proposal leads to BLEU improvement of 1.56%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discriminative Syntactic Model for Source Permutation via Tree Transduction

A major challenge in statistical machine translation is mitigating the word order differences between source and target strings. While reordering and lexical translation choices are often conducted in tandem, source string permutation prior to translation is attractive for studying reordering using hierarchical and syntactic structure. This work contributes an approach for learning source strin...

متن کامل

A New Subtree-Transfer Approach to Syntax-Based Reordering for Statistical Machine Translation

In this paper we address the problem of translating between languages with word order disparity. The idea of augmenting statistical machine translation (SMT) by using a syntax-based reordering step prior to translation, proposed in recent years, has been quite successful in improving translation quality. We present a new technique for extracting syntax-based reordering rules, which are derived ...

متن کامل

Syntax-based reordering for statistical machine translation

In this paper, we develop an approach called syntax-based reordering (SBR) to handling the fundamental problem of ord ordering for statistical machine translation (SMT). We propose to alleviate the word order challenge including morphoyntactical and statistical information in the context of a pre-translation reordering framework aimed at capturing shortand ong-distance word distortion dependenc...

متن کامل

A Direct Syntax-Driven Reordering Model for Phrase-Based Machine Translation

This paper presents a direct word reordering model with novel syntax-based features for statistical machine translation. Reordering models address the problem of reordering source language into the word order of the target language. IBM Models 3 through 5 have reordering components that use surface word information but very little context information to determine the traversal order of the sour...

متن کامل

Practical Approach to Syntax-based Statistical Machine Translation

This paper presents a practical approach to statistical machine translation (SMT) based on syntactic transfer. Conventionally, phrase-based SMT generates an output sentence by combining phrase (multiword sequence) translation and phrase reordering without syntax. On the other hand, SMT based on tree-to-tree mapping, which involves syntactic information, is theoretical, so its features remain un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007